Recognition of Devanagari Handwritten Numerals using Gradient Features and SVM
نویسندگان
چکیده
Recognition of Indian languages is a challenging problem. In Optical Character Recognition (OCR), acharacter or symbol to be recognized can be machine printed or handwritten characters/numerals. Several approaches in the past have been proposed that deal with problem of recognition of numerals/character depending on the type of feature extracted and way of extracting them. In this paper also a recognition system for isolated Handwritten Devanagari Numerals has been proposed. The proposed system is based on the division of sample image into sub-blocks and then in each sub-block Strength of Gradient is accumulated in 8 standard directions in which Gradient Direction is decomposed resulting in a feature vector with dimensionality of 200. Support Vector Machine (SVM) is used for classification. Accuracy of 99.60% has been obtained by using standard dataset provided by ISI (Indian Statistical Institute) Kolkata. General Terms Pattern Recognition, Indian Scripts, Optical Character Recognition.
منابع مشابه
Printed and Handwritten Character &Number Recognition of Devanagari Script using SVM and KNN
Recognition of Devanagari scripts is challenging problems. In Optical Character Recognition [OCR], a character or symbol to be recognized can be machine printed or handwritten characters/numerals. There are several approaches that deal with problem of recognition of numerals/character. In this paper we have compared SVM and KNN on handwritten as well as on printed character and numerical databa...
متن کاملHandwritten Devanagari Character Recognition Using Gradient Features
We describe novel methods of feature extraction for recognition of single isolated Devanagari character images. Our approach is flexible in that the same algorithms can be used, without modification, for feature extraction in a variety of OCR problems. These include handwritten, machine-print, grayscale, and binary and low-resolution character recognition. We use the gradient representation as ...
متن کاملDesign and Simulation of Handwritten Gurumukhi and Devanagri Numerals Recognition
The work presented in this paper focuses on recognition of isolated handwritten numerals in Devanagari and Gurumukhi script. The proposed work uses four feature extraction methods like Zoning density, Projection histograms, Distance profiles and Background Directional Distribution(BDD). On the basis of these four types of features we have formed 10 feature vectors using different combinations o...
متن کاملRecognition of Devanagari Handwritten Numerals using Two Different Approaches
This paper proposes two methods for automatic recognition of Handwritten Devanagari Numerals. In first method, Grid features i.e. structural features are extracted and minimum distance is calculated using these features for classification. In second method, ICZ (Image Centroid Zone) & ZCZ (Zone Centroid Zone) features based on distance information are extracted and given to an already trained N...
متن کاملHandwritten Devanagari Numeral Recognition by Fusion of Classifiers
The abstract is to Recognition of handwritten Devanagari numerals has many applications especially in the field of postal automation, document processing and so on. Due to its vast applications, many researchers are actively working towards development of effective and efficient hand written character/numeral recognition. Devanagari script is widely used script in Indian sub-continent, also dev...
متن کامل